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Monge’s original problem

move a pile of soil from a deposit to an
excavation with minimum amount of work

A\

from “Memoir sur la theorie des deblais et des remblais’ - | 781



Mathematical Model of Monge’s Problem

1", 1~ nonnegative Radon measures on R

pt (RY) = pm (R) < oc
s: R?Y — R? one-to-one mapping rearranging ,u+ into [

sy’ = o (s4)
or

/X h(s(z)) dut (z) = / h(y)du~(y)  Vh e C(R%RY

Y

for X = spt(u™), Y = spt(p)



c(x,y) cost of moving a unit mass from z € R¢
to y e R

total cost  [|s] := /%dc(@s(a;))dﬂ(x)

Monge’s problem is then to find s* € A (admissable set)
such that:

[s™| = ];Iélill I|s] (M)

with A={s | su(p™) =p_}



PROBLEM IS TOO HARD!

* Constraint is highly nonlinear!

/X h(s(z)) dut (z) = / hy)du~(y)  Yhe CRGRY

Y

* Hard to identify minimum!

{sk}r=1 C A minimizing sequence such that I[s;] — inf I[s]
Hard to find {sk; } subsequence such that s;, — s* optimal.

e (lassical methods of Calculus of Variation fail!

* No terms create compactness for [|-]

+ I[-] does not involve gradients hence it can not

be shown coercive on any Sobolev space



KKantorovich’s relaxation -1940’s

Kantorovich’s idea: transform (M) into linear problem

Define:

M = {prob. meas. g on R x R | proj, u=ut, projy [ = ,u_}

Ju] = /wac(m’y) dp(z,y)

Find 11© € M such that J[p*] = min J[y] (K)
pneM



Motivation

given sc A wecandefine peM as
uw(E) == pt{xe §Rd} (z,s(x)) € E} (E C R x R?, E Borel )

Problem
1" need not be generated by any one-to-one mapping s € A

Solution

only look for “weak’ or generalized solutions



Linear programming analogy

(Finite dimensional case)

pt(e) — p wy) — py
/L(ZC,y) — Hij c(:c,y) — Ci 4
(i:17'°'7n7j:17" ’ )

Mass Balance Condition Zﬂz Zﬂg < o0

Constraints Zum = 1 Z:“w = pj, pig >0
n ™m
Linear programming problem  minimize » ) ¢
i=1 j=1

n m
maximize E ui,u;r + E Vj b
i=1 j=1

subject to  wuw; +v; < ¢

Then dual problem is



Kantorovich’s Dual Problem

Define;
L:= {(u, V)

u,v: R — R continuous , u(z) +v(y) < c(z,y) (z,y € RY) }

K (u, v) := /% ula) dut(x) + / o(y) d~ ()

§Rd

Then dual problem to (K) is:

Find «",v" such that K (u* v*) = (mz;,xﬁK(u,v)
u,v) e



Gradient Flows

To define a gradient flow we need:
«  adifferentiable manifold M

a metric tensor ¢ on M which makes (M, g) a Riemannian manifold
e and a functional £ on M

d
Then d—? — —grad E(u) is the gradient flow of E on (M, g).

where g¢(gradFE,s) = diff £ - s for all vector fields S on M.

d
Then gu(d—?, s) + diff £}, -s = 0 for all vector fields s along u.

Main property of gradient flows:

energy of system is decreasing along trajectories, i.e.

d du du du
— F — dit &, - — = —q, :
(u) = diff £, g (dt dt)

dt dt



Partial Differential Equations as gradient flows

(

let M :=<u >0, measurable, with /u dr = 1}

\

define the tangent space to M as

T,M = {s measurable, with /s dxr = O}

and identify it with {p measurable }/ ~

via the elliptic equation —V - (uVp) = s .



Define
gu(81782)

and

du

gu(———,S) +—(ﬁfflﬂu,-8

dat

/qul - Vo dx (E /81]?2 d:v)

B(u) = / (1) da

|
R
)
F| S
=
|
<
‘S
<
=
m\
B
-
S
=
|

/(%p—l—Vp- (uVe’(u)))d:c _ /p (% V. (uVe’(u)))dx 0

—

ou ,
o = V- (uVe'(u))



Examples of PDE that can be obtained as Gradient Flows

e(u) = u logu % = Au Heat Equation
e(u) = ulogu + uV % = Au + V- (uVV) Fokker-Planck Equation
|, ou " . .
e(u) = U 5 = Au Porous Medium Equation

Note: equations are only solved in a weak or generalized way.




Important fact! Can implement gradient flow without making explicit
use of gradient operator through time-discretization and then passing to
the limit as the time step goes to 0.

©  Jordan, Kinderlehrer and Otto (1998)

a“gz’ D div (uVe(2)) — Au=0
© Otto (1998) Ou(x, t) N
ot v

© Kinderlehrer and Walkington (1999)

ou(x,t) O .

o~ o UV (@) + K(u)e) = g(x,1)

©  Agueh (2002)

8uéa;, ) div {ch* [V (F'(u) + V(az)]} =0

©  Petrelli and Tudorascu (2004)

8’&(851;, t) v . (uVW(ZE,t)) _ Af(t’u) — g(:U,t,’LL)




Time-discretized gradient flows

1. Set up variational principle

Let h > 0 be the time step. Define the sequence {UZ}k:ZO recursively

. U . h
as follows: u” is the intial datum u"; given u;_,,define u} as the

solution of the minimization problem
(1

516158[ <\% d (uz_l, u)

2

Ewl (P
where d, the Wasserstein metric, is defined as

d+—2;:°f</ —yl?d
(™, 1) inf, wx%‘f y|“dp(x, y)

\

i.e. d is the least cost of Monge-Kantorovich mass reallocation of ,u+to w

for c(z,y) = [z -yl



2. Euler-Lagrange Equations

Use Variation of Domain method to recover E-L eqgns.

[ w-o)ewdute —h [ o)V g = 0
R x R Rd
where P(s) =: €'(s)s — e(s)

or in Gradient Flow terms:

h h
Up — Up_q

h

= —grad E(u})

Then recover approximate E-L eqgns., i.e.

1
/%d{g(uz—UZQC—MuZ)AC}dm = %HVQCHOO (uf, uf_,)?




3. Linear time interpolation
Define u(x,t) == uf(z) if kh<t< (k+1)h

After integration in each interval over time we obtain

/ {%(uh(x, t+7) —u(2,) ¢ - ¢(uh)AC}dl‘dt < 0 dlug,uiy)’
[0, T] x R4

k=1

& 2
Necessary inequality: Z d(up,up_)" < Ch
k=1



4. Convergence result as time step h goes to 0

® | inear case

Through a Dunford-Pettis like criteria show existence of function u
such that, up to a subsequence, " — u in some LPspace.

® Nonlinear case

Stronger convergence is needed, through precompactness result
in L' Also needed discrete maximum principle:

1’ bounded = u" bounded

S

Then, passing to the limit in the general Euler-Lagrange equation
shows that u is a “weak” solution of

5 = v ve) (= o)




Nonlinear Diffusion Problems

g(x,t,u) in Q x (0,7T),
on 9Q x (0,T), (NP)
in 2.

(uVO + Vf(t,u)) - v,
u(-,0)

|
-

{ ur — V- (uVU(x,t)) — Af(t, u)

]
£

Theorem 4. Assume (f1)-(f3), (g1)-(g4) and (V),
then the problem (NP) admits a nonnegative
essentially bounded weak solution provided
that Q Is bounded and convex and the initial

data u'is nonnegative and essentially bounded.



Hypothesis

(v —v)(f(t,u) — f(t,v)) > clu — v|* for all u, v > 0, (f1)

f(-,s) are Lipschitz continuous for s in bounded sets (f2)
. . of . L
f(t,-) differentiable, Fe positive and monotone in time (f3)
S

g(z,-,-) nonnegative in [0,00) x [0,00) for all z € R*  (g1)
gz, t,u) < C(1+4+wu) locally uniformly w.r.t. (z,t), t >0 (g2)
(93)

)

19(2,-,u) }(zn) 1s equicontinuous on [0,00) w.r.t. (z,u) (g4

g(x,t,-) is continuous on |0, 0c0)

W R x [0,00) — R diff.ble and locally Lipschitz in z € R ()



O

O

Novelties

Time-dependent potential W (-, ¢) and diffusion coefficient f(, -)

Non homogeneous forcing term g(z,t, u)

+

(k+1)h
Averaging in time for U, f and g,e.g. 0" := l/ U(-,t)dt
k

h Jkn

kh

New variational principle for v, := u;_1 +/ g(-,t,up_1)dt

min
ue M

{

1
— d
2h

(k—1)h

(o} 1 u)* E<u>} (P



5 New discrete maximum principle

Lemma 5. If 0 <’ < My < oo a.e. in Q for large
enough M), then there exists 0 < M = M(Mj) < oo

suchthato<u" < Ma.e.inQ, forallh>0 if
f satisfies (f3), sthlo ¢s(t,s) = oo uniformly int >0
and for s > 0 large enough we have

o O
1S (bs = 1) — (s + 0= D)2 (1)

does not change signgor allt>0,n>1,
being nonnegative if 6—£(-,s) IS Increasing and

nonpositive if decreasing.



5 New discrete maximum principle

v’ bounded = u" bounded

Ke _
S U= (@) YoMy~ UF) = ul <
inequality:

where Uy is the solution of the k-th “homogeneous
stationary’ equation, i.e.

—V - (uVI*) — AfF(u) =0



Signed measures

ug — V- (uVY(x,t)) —vAu=g(x,t) in Q x (0,T),
(uVP + v Vu) v, =0 on 90 x (0,T), (SMP)
u(-,0) = ug in 2.

Let

\

(1
ut := argmin < 5 d(u, v5 12 + h F(u) ¢ over all u € lej:—l

\ /

) ) ) 1 hOe+1)
where Y :=ul +hgi and ¢5(x):= E/ g+ (x,t) dt
hk

Let ") =" —u" and define

uP(z,t) .= u® (2) for kh <t < (k+ 1)h



_ 2

n—1
Z d(vit uk)? + Z dv" 1 uF)? < Ch
k=1

2

Theorem 5. Given u° € L () and continuous
functions ¢, ¥ : R x [0, 00) — R, such that ¥
satisfies (I) and g is Lipschitz in time uniformly
in X, then the problem (SMP) admits a solution
u e L(Q).




Why use gradient flows with Wasserstein metric?

® We can minimize directly in the weak topology
Wasserstein metric convergence is equivalent to weak star convergence

® There are no derivatives in the variational principle

this allows for use of discontinuous functions in approximation,
for example step functions

® We can construct new (convex) variational principles
for problems like the convection diffusion equation

o We can recover new maximum principles
fairly easily from the variational principles



